
-AD-Ai14e 497 THE ROE FILE SVSTEM(U) ROCHESTER UNIV NV DEPT OF IAi
COMPUTER SCIENCE C S ELLIS ET AL. MAR 83 TR-ii9

. IN884-82-K-ft93

UNCLSSIFIED F/G 9/2 N

EEEEEh hi

,+_o
L2L

1111 11 W.4 120O

•1.8111IL21.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU-OF STANDARDS-1963-A

%

The Roe Fie System

Carla Schiatter Ellis and Richard A. Floyd
Computer Science Department

* University of Rochester
Rochester, NY 14627

TR119
March 1983

Roceser Ne Yrk14 2

The Roe File .Syste

CraSlte Eli an Rihr A ly

CoptrScec eprmn

Unvestyo Rcese

Rochster /Y142
TR11

Roe is a netwoThewRoe File ystemdelodfrahtrgnoulcl

expeimening itharoslacitter llan icand . tibto Floydiesan
to povie uerswit aomputlyerene epatmthtaksdvngeo
distibutd ad dierseresuniesit ofe Roe sternhei fsouinsth
probems f enurin conisRochest er, cae NYta 14627 tanprei

reoefisain an etork-idn fileqyste ben deesblped fhseort ereos local
ntokTsytmhas been desplsedsfrinte foew proe:to ervulie ase assubedo
enperinment, th ariicisrcue for, file igrations npdributio sechaeiems and
toprovintde useat alwiatlogicallycaoeren file ocsy tatd taesliadvntofaesof
isfrtrited andk diveheror. althe ste is atheisofmsoltions to tei
perbesod nuigcnitec.frpiae aaalwn rnprn

4' reconfiguratin, and providingadequate file cesiiiy Thsrpresrbswa

has~~~~~~~~~~~~~~~~ benacmlseIofaFnteRepoet W uln h sue

- - - - - -- - - - - ----.--' W7 C.'. *

I,. .g .. .

U,' j1. Introduction

Roe is a network-wide file system being developed for a heterogeneous local
network. The system has been designed for two purposes: to serve as a testbed for
experimenting with various policies for file migration and distribution strategies and
to provide users with a logically coherent file system that takes advantage of
distributed and diverse resources. The system is a synthesis of solutions to a number

-..' of different problems such as ensuring consistency of replicated data, allowing
transparent reconfiguration, and providing adequate file accessibility. The project has
given us a context within which to investigate how these issues interact with each
other.

While sharing of files among machines is widely recognized as one of the primary
services that should be offered by a network, it has not always been convenient or
easy to do. In the past, the approach has been to use the existing local file systems
and provide tools for transferring files between them. This usually requires the user
to know the locations of files, and several different naming conventions. In an
evolvin$ network environment, one might even find different file transfer protocols
depending on the source and destination machines. Given the ability to transfer files,
users can spread copies of a file throughout the network in an effort to ensure
availability. This puts a burden on the user to maintain consistency of these copies
during subsequent updates. Our experience suggests that it is extremely easy to lose

~. ~.track of where all the copies are kept and what copies are up to date (even when the
,y' file is not shared). Roe grew out of a need to address these and other problems that

arose in our heterogeneous local network.

The following goals have guided the design of Roe:

1) Availability. As suggested earlier, networking has encouraged users to replicate
their files in order to increase availability in spite of failures. Roe supports replication
of not only file objects but also the information used to find and access them. Thus
the do-it-yourself management of copies has been taken over by the system. The user
now deals with an abstract file object called a Roefile which is represented by a set of
copies and given a symbolic name by its owner.

2) Correctness and consistency of copies. We take the point of view that the user
should not be presented with any surprises (e.g. updates appearing to have
disappeared right after a supposedly successful write). Therefore, consistency is given
a high priority even though it implies somewhat lower availability and performance.

3) Network transparency. Our view of transparency is that the user need not be
aware of the location of the data being accessed, the number of copies that may have
been created, and the current status of other sites on the net. The user perceives a
single directory structure for resolving the symbolic Roefile names. The names do
not include any encoding of location.

4) Ability to reconfigure. It should be possible to move copies and to change the
number of copies associated with a Roefile. This allows for more effective balancing
of system-wide disk storage allocation and performance. Migration might be
triggered by changes in usage patterns, device characteristics, or file specifications.

Although there has been a considerable amount of work done in the area of
~ - distributed file and database systems, few projects have pursued a similar set of goals.

The LOCUS project at UCLA [Popek 81 seems to be the most closely related. The

. I
i i b '? ,-':.5'''',;?.''' '--- --,'.-' ''-. ? i?7. ' -,' '- ,- -N.' - " -- - i-

emphasis there is on network transparency, availability of resources, and
performance. Key elements in achieving these goals include a network-wide location
mndcpe ndent. naming structure, automatic replication of storage, a centralized
synchronization scheme, automatic detection and limited resolution of inconsistencies
resulting from upidates durn g partitioned operation, and problem-oriented low level
protocols. limited migration (i.e. automatic archiving) and the ability to cache files at
one's personal workstation have been included in the design of the Central and Spice
file systems at CMU [Accetta 80, Thompson 80]. Distributed directory service has
been provided in the Clearinghouse [Oppen 81) and Grapevine (Birrell 82]. In
System R* [Lindsay 80], catalog entries for an object may be replicated, but the
name of the object encodes location information for finding the proper entry. Other
distributed file servers (e.g. Juniper at Xerox PARC [Sturgis 801 and SWALLOW at
MIT [Svobodova 80 , Reed 80]) provide low-level functions that would allow a file
system supporting name service, replication, and so on to be implemented as a client;
but they do not address these issues directly.

This report describes what has been accomplished so far in the Roe project.
Briefly, the heterogeneity of the native file systems has been dealt with and
mechanisms have been developed that allow migration, replication of file objects,
and replication of access information to work together. We have not yet started
studying the performance of alternative policies built on these mechanisms. In the
next section, we outline a model for local network environments that captures the
underlying assumptions of this work and elucidates many of the issues being
addressed. Then we outline the basic structure of Roe and the functions provided. In
Section 4, algorithms for mutual consistency are evaluated with respect to our model
and compatibility with migration and replication of directory information. Finally,
the state of the implementation to date is described and some conclusions drawn.

2. Local Network Model

The project was conceived in terms of our local environment which is a
heterogeneous set of machines (currently Xerox Alto personal computers ['['hacker

79] seera VAes unin .NX~4 and the RIG gateway [Ball 76, Lantz 80]
running on a set of Eclipsesl communicating through an Ethernet [Metcalfe 76]. T[he
model being presented here is intended to capture those aspects of a local net that
are relevant for the file system design and to be general enough to represent various
types of networks, including our future plans for growth. One of the key assumptions
is that with the participation of personal computers, the possibility of a number of
machines being unavailable for relatively long periods of time becomes a real issue.

* Figure 1 shows our network represented by the model. A site (denoted by acircle) is a named local file server. This definition is motivated by the existence of
removable and interchangeable disks. The set of file system processes that provide
access to a certain collection of data seems to be the meaningful entity to name; evenl
though it may not permanently reside on any particular machine. Thus one of the
properties associated with a site is its availability (i.e. probability of the site being
'down' because either it is off-fine or has failed). Other attributes deal with the
heterogeneous nature of the environment (e.g. the hardware base needed by the site).
Each site can possess a number of storage devices (denoted by the symbol of a drum)
with potentially different properties. For example, it is possible for some of the
devices to have a higher probability of being down than its site does. An active file
server could accommodate for fiailed devices in some respects so that the unavailable
device would have a different effect than if the site were unavailable. The device has

43

other important properties associated with it, namely local speed of access and
Ncapacity. The network configuration consists of a passive wi re (denoted by the heavy

solid lines), switches (denoted by rectangular boxes), and addressable machines
(denoted by heavy dots). The wire is assumed to be a high bandwidth channel which

. is generally reliable. The switches are used to identify places where the line of
communication may be broken. A failure of a switch can cause the network to
become partitioned with healthy sites that cannot communicate with each other
unless an alternate path is found. The machines serve as placeholders in the
configuration to which sites may be assigned (dashed lines constrain the possible
mappings). Users may also be associated with machines from which they execute
programs that use the file system.

-. - The status of the model is an instantaneous description composed of the current
machine-site and machine-user mappings, the state ('up' or 'down') of each site,
switch, and device, and the available space left on each device. Using the status
description, it is meaningful to talk, for example, about the distance from a user to a
copy of the desired file (i.e. the number of switches between the machines involved).
This model is reflected in the implementation by various data structures.

3. System Overview

3.1 Roe Files

As stated previously, a Roefile is an abstraction that is referred to using a location
independent user-chosen symbolic name. Thus the global name space is independent
of the physical configuration of the network machines and data residing on them.
Names are resolved by a global directory which should be thought of as a single
entity although it may have a distributed implementation. The global directory is
organized as a UNIX-like hierarchical structure. A symbolic name takes the form of
a path name appended with a version number. Each different version of the same
pathname is a distinct object. The version number should not be confused with a
timestamp which changes at each update; in other words, existing versions may be
modified and new versions are created explicitly. The Roefile name maps to an
object descriptor that contains the set of unique local file ids which represent copies
of the object. It also contains the various attributes associated with objects (e.g. access
control list, multiple copy update data, semantic type information). When a Roefile is
opened, the mapping is done and an appropnate subset of copies is chosen to
participate in the transaction. We have adapted Gifford's Weighted Voting algorithm
_Gifford 791 for maintaining mutual consistency. This decision is discussed further inSection 4. Roe uses locking at the level of individual copies and atomic transactions
to implement this solution.

3.2 Functions

This section describes the functions available to users of Roe. Communication
with the file system is done through port-based IPC messages as proposed in [Rashid
80] and extended throughout our network [Moore 82].

The messages of the protocol fall into three categories represented by three types
of destination ports. Packports provide a way of gaining access to the file system.
These are public ports that are located through IPC's minimal name service.
Directoryport messages include commands for manipulating the directory structure,
changing the working directory, modifying the entries in a directory, opening files,
and managing replication and migration. 1',eports are used for operations on

k
o
*,m P,

-2 3

~4

individual files. A detailed description of the protocol is given in the Appendix.

A user must be logged in to the Roe system in order to issue requests. A LOGIN
message containing information necessary for authentication is sent to a Packport.MThe reply contains a DirectoryPort to which the user sends subsequent directory

9." operations.

,-'.-" DirectoryPort messages include "standard" commands such as CREATI)IR.
DELETEDIR, READDIR, CHDIR, RENAME, and DELETE. The OPEN
operation returns a FilePort for subsequent file access if an appropriate quorum of
copies can be gathered. For a file that is being created, the message must contain the
desired location of each copy and the voting configuration. In addition, the user

... : initially has available messages to manage replication. CACHE creates a current copy
of the named Roefile at the specified site (usually the user's local disk). There is also
an UNCACHE command. MIGRATE moves the copy of the given Roefile that
resides on the specified source pack to the destination pack.

Upon opening a file and receiving a FilePort. the user has available the ordinary
file operations (e.g. READ, WRITE, CLOSE). Data sent in a WRITE operation to
the FilePort is propagated to each copy participating in the transaction.

A side effect of the Roe project has been to provide uniform FTP access to non-
Roe files managed by the native file systems [Bukys 82]. The messages are similar to
those described in the Appendix except CACHE, CACHEDIR, MIGRATE,
UNCACHE, and UNCACHEDIR do not apply and certain aspects of other
operations (namely those that concern copies of a file object) are different. This

4- protocol (with slight variations) is used internally by Roe.

3.3 Organization and Distribution

The structure of Roe is given in Figure 2. There are five types of modules shown.
4... Transaction Coordinators, Global Directory Servers, Local Representatives and Local

File Servers are considered part of Roe. Users are the source of commands coming
into the net file system and are not actually part of it (however, a user interface
[Floyd 82a] has been supplied for the Alto Mesa environment [Mitchell 79]).

The rules for distributing these modules are as follows: Each site holding copies
of Roefiles has a Local File Server running on its machine and an associated Local
Representative (usually co-resident). Each User is associated with a Transaction
Coordinator that normally runs on the user's machine. The Global Directory is
drawn as a cloud in Figure 2 since it functions as a single entity. The design allows

-. ,'-for multiple cooperating modules delivering this service. There are no real
restrictions on how these should be distributed; however in the current phase of the
project, coding of the Global Directory Servers has been limited to the VAXes.

.-. The Transaction Coordinator is responsible for transforming the User's requests
for a single Roefile into a transaction involving a set of copies. It must maintain the
state necessary for recovery of its transactions.

The Global Directory Subsystem does the mapping from Roefile names to the set
of local file ids of the copies and selects quorums. When a user logs in, the Global
Directory Server spawns a Transaction Coordinator. It also maintains the global
directory structure. Migration policies will eventually be incorporated into this
subsystem for automatic system-controlled migration. When a file is being crealed.

A-

1.4.9%

5

the location and weight of each copy to be created must be determined here. Other
functions include authentication, maintaining working directories and constructing
the network model.

The Local File Server is responsible for storage of files and machine dependent
details. The functions provided include unique naming for the individual copies of
files (<pack name>(local file id>), management of disk storage space, recording of the
data needed by the consistent update algorithms (e.g. timestamp, weight of the copy)- and migration procedures (e.g. syntactic type), synchronization (e.g. locks), and a
standard set of file manipulation operations (e.g. read, write, commit, create). At thislevel a file copy is treated as a stream of data units (the size and format of which
depend on the intended hardware base and the type) and is locked as a whole (thereis no finer granularity). The purpose of the syntactic type associated with each copy
is to allow conversions between the different data representations understood by theheterogeneous computers and thus to facilitate transparent movement of data. TheLocal File Servers also implement the uniform FIP discussed in the previous section.

The Local Rep and Local File Server work together to realize Roefile copies. TheLocal Rep augments the Local File Servers to satisfy the requirements of Roe. It also
establishes connections with the Global Directory Subsystem and constructs the local
version of the net model.

As an example of how this works, imagine that the User in Figure 2 wants towrite to an existing Roefile (only the message flow essential to understanding the
relationships of the modules is shown). The LOGIN and creation of the Transaction
Coordinator is assumed to have already occurred. The User issues an OPEN request(a) to the Directory Port. The Transaction Coordinator which receives this request
communicates the information to the Global Directory Servers (b). The mapping is
done and a quorum collected through the appropriate Local Reps (c). A set ofFilePorts representing the quorum is sent back to the Transaction Coordinator (d)
for use in translating incoming WRITE messages (e) to multiple updates on copies~(f.

4. Replication

As mentioned earlier, Roe replicates file objects and directory information to
increase availability. This requires that some algorithm be adapted to insure that:.5, copies seen by the user remain mutually consistent. In section 4.1 we describe a
number of mutual consistency algorithms. Section 4.2 examines the behavior of
several of these algorithms in the presence of partitioning, node failures andmigration and shows why we believe that the choice made for Roe (weighted voting)
is appropriate for file objects in our environment. Section 4.3 discusses the

* -replication of directory information.

4.1 Mutual Consistency Algorithms

There are 3 basic methods of insuring an appropriate degree of mutual
consistency between copies [Bernstein 82]: 'do nothing', primary copy and voting.
'Do nothing' algorithms write to all copies of a replicated file when making an
update. These algorithms actually decrease the availability of a file and so will not be
considered further.

Primary copy algorithms (e.8. [Stonebraker 79]) designate one copy to be the

primary at each point in time. All reads and writes go to the site of this copy, and it

.*,* . . ~ *** . . .' ~ .? .~
* * * . - .. -

6

is responsible for not~ifying other copies of changes. As long the primary sieis up,
reads and writes may continue (one usually also requires that a majority of the sites
be accessible to avoid problems with partitioning). If the primary site fails, an
election is held to decide on a new primary copy. For example, in [Stonebraker 79],
the primary copy depends on the status of the network (which sites are up) and a
fixed linear ordering of the copies of an object. To decide who this is, each site
accumulates a list of up sites and then checks to make sure that all agree on who the
new primary is. This method requires that all live copies be current. This is usually
handled by postulating an underlying message transmission system that can buffer an
arbitrary number of messages for later transmission to a down site.

An alternative primary copy algorithm, used in LOCUS [Popek 81], employs a
centralized coordinator to keep track of the state of each copy of a file. Requests to
open a file go through the centralized coordinator, which returns a pointer to the
most current version of the file. After the file is closed, the coordinator propagates
changes to the other copies of the file. The scheme used in LOCUS does not ensure
consistency. If the network becomes partitioned and separates the coordinator from
some of its files or if the site of the coordinator goes down, a new coordinator is

.4 -. created. This may lead to loss of currency information or more than one coordinator
controlling access to a group of files, which can result in incompatible versions of a
file *being created . Loss of the primary before updates can be propagated to other
copies can cause similar problems. The centralized coordinator approach can be
preserved in a consistent algorithm. With the consistency requirement, soltifons that
can be classified as primary copy appear to share two important characteristics: the
need for agreemeni on a single authority governing the object (e.g. the identity of the
coordinator or the primary copy itself) and a method for propagating currency

S. information to candidates that may take over the primary role.

Voting solutions do not require that a copy be brought up to date when a site
recovers since the existence of obsolete copies is acceptable as long as enough current
copies are available. Weighted Voting [Gifford 79] associates a timrestamp and a
voting strength with each copy of a file. When a file is opened, the timestamp and

* voting strength are collected from the copies. At least r votes (a read quorum) must
S be collected to read a file and MAX[r,w] to write it. Reads can be from any current

copy and writes go to current copies which hold a total of at least w votes (a write
q uorum). Making r + w greater than the total number of votes in all copies of the
fe insures that at least one current copy will be in any quorum. The timestamp of

each participating copy is incremented when the copy is updated.

4.2 Evaluation of Mutual Consistency Algorithms

These algorithms can be evaluated along two dimensions important for Roe-,
namely, what complications are introduced by the migration requirement and what
the perceived delay is to the user due to coordinating updates. Comparisons of delay
are made by considering each algorithm in an identical context that consists of the
user, local fie servers, and the directory manager. Note that this is simpler than. the
actual organization of Roe described in section 3.3. Performance figures given
include the overhead for coordinating updates and maintaining currency information,
but not for directory lookup. See [Floyd 82b] for details of the analysis. In addition,
the algorithm chosen should beeastoimplement within theconstraints imposed by
our network model.

[Stonebraker 79] and similar algorithms provide the strong consistency desired for
-~ Roe. However, one of the assumptions made to insure this is unbounded message

.1 7

* ~ ~ ~ ~ -i 1-4..r..~r W7

7

queues for down sites. Since some Roe sites reside on personal machines and so may
be down for long periods of time, this is unacceptable. Along with the issue of queue
length, queuing of updates implies a recovery time whenever a site is brought up.
Because of the direct interaction between users and their personal machines, the4 delay of bringing the local disk up to date will seem significant. The delay associated
with operning a file depends on the status of the primary copy. If it is down, an
election is triggered which is a very expensive operation in terms of message activity.
Otherwise, opens are simple, invovn a constant number of messages (3 under our
assumptions). Writes may be propagated in parallel to all copies. Thus in this case,
the delay is 3d (d = message delay). The requirement that each server holding a
copy know the locations of all other copies makes migration difficult, since all copies
have to be informed when one moves. Each list of copies must agree in order for the
determination of the primary copy to work. Creatin new copies (e.g., caching a
temporary copy to increase performance) also requires that all other copies be
informed. Queuing of updates also interacts with migration. A reasonable restriction
to make is that a copy may move when its queue is empty and the file is not opened
for writing.

As explained in section 4.1, the solution in [Popek 811 fails to meet our
consistency objective. A compensation for the poor consistency is that availability is
very high. Migration and caching are -both easy, since only the centralized
coordinator needs to be notified when copies are moved or created. Performance is
high. Communication and maintenance of currency information takes as few as three
messages and two disk accesses to open a file for write, with a time delay (since
updating currency information can be done asynchronously) of roughly 3d + a (a=
disk access).. Also, with this solution, writes may be directed to the fastest of the sites
holding copies of a file and distributed to slower sites at a later time. [Gifford 79] and
[Stonebraker 791 generally require writes to proceed at the speed of the slowest
participating site.

[Gifford 79] also provides the strong consistency desired for Roe. Availability isnormally comparable to [Stonebraker 79], although the weights of votes on copies
can be adjusted based on knowledge about site availability to increase file
availability. Migration and caching involve just updating directory entries.
Attempting to collect a quorum based on a not yet updated directory entry is not a
problem. A copy that is 'in transit' simply does not vote. If a write quorum can be
gathered from other representatives, the moved copy could be outdated when it isinstalled in the new site but such inaccuracies can be tolerated. [Gifford 79] lends
itself to distribution more readily than [Popek 81], since currency information for a
copy is kept with the copy itself and is always correct. One pays for this in the
complexity of file opens. Opening for write takes at least (2 +2n) messages and 2n
disk accesses, where n is the number of copies participating in the vote. (The
example in Figure 2 actually takes somewhat more than this because of the presence
of the Transaction Coordinator, Local Reps and because votes are being collected inthe Global Directory cloud.) For our purposes, n will usually be a small number
(e.g., three). Since vote collecting can go on in parallel and timestamps; may be
updated asynchronously, the time delay is roughly 4d + a (plus queuing delays).
This can be reduced to 3d + a if the user is responsible for collecting the quorum
and broadcasting updates. Although the initial activity is fairly high, the delay
perceived by the user is comparable to the primary copy algorithms.

* Of the algorithms outlined above, [Gifford 79] is the only one which gives the
* desired degree of consistency and availability while still being workable in the

presence of migration. A number of other algorithms besides the ones presented here

#1:

-7" Jr % .

have been examined. All either have inferior consistency or availability properties
when compared to [Gifford 79] or complicate migration.

4.3 Replicating the Directory

From the list of directory operations given in section 3, it is clear that a directory
% -e server must support the following operations: Read Entry (where 'Entry' is the

information describing one Roefile), Add Entry, Delete Entry, Modify Entry and
Enumerate Entries at a node of the directory tree. The 'enumerate' operation and the
common practice of grouping related files in a directory suggests that the unit of
replication and migration be the set of entries in a node. The strong consistency
requirements given for file objects also apply here (we would like to see the effects of
adding a file when we subsequently do an enumerate, the effects of renames when
we do lookups, and so on). Also, we will want to migrate directory information.
Hence, weighted voting is a reasonable starting point from which to develop an
algorithm for maintaining mutual consistency in replicated directories.

The fairly specialized entry-oriented nature of operations on a directory means
that it is not necessary to lock the entire file describing a node. Locking is also not
desirable since a user might want to remain 'connected' to a directory for a relatively
long period of time without affecting the ability of others to access it. Based on this,
we can propose the following variation of Gifford's Weighted Voting algorithm to
increase concurrency:

When a user connects to a directory, the weighted voting algorithm is
performed on the node copies to collect a read quorum, r. At this time, the user is
registered with the directory servers controlling copies (registration differs from
holding a lock in that access may be 'broken' with notification as explained below
and the modification of individual entries is reported to connected users). From the
read quorum, a current copy is selected and read requests are directed to it.

Writing requires that updates be made atomically to current copies containing at
least w votes, is is done by sending the participating servers the update requests
(Add Entry, Delete Entry or Modify Entry). If they are willing to make the change,
they respond with an acknowledgement. If at least w votes are collected this way,
then the user can instruct the servers to commit. At this point, the changes are
actually mrade and the timestamps of the participating copies incremented. If the user
is unable to collect w votes, then the request is aborted. Only one write may be active
for a directory node at a time. Note that a writer needs to have collected a read
quorum sometime in the past so that he can determine which are the current copies.

The Modify Entry operation needs a bit of special handling to guard against
making changes based on invalid data. We send, in the Modify Entry request, both
the new information and the data in the entry that the changes are based upon. If
this data does not agree with the information currently in the directory, the request is
rejected. Since an individual directory entry is small, little extra overhead is involved
in doing this.

The registration information is used when a writer finds that he can't update all
current copies of a node, even though he is able to collect a write quorum. In this
case, the writer, in the commit message, tells the participating directory servers to
notify users who have registered for that directory -that they may no longer be
reading a cui.-m copy. Since r+w is greater than the total number of available
votes, there Le always some overlap between read and write quorums and so all

9

readers will be notified.

Each copy of a directory node contains a timestamp, voting strength and an entry
for each file and directory that is a direct descendent of the node. Each entry
contains the location of every copy of the file (in the form [packj~unique id)
described by the entry, the read and write quorums for the file, and access control
and other miscellaneous information (Figure 3).

When a user first logs in, a Global Directory server is contacted which locates his
default directory and registers him with the appropriate directory servers. This may
require traversing down one or more nodes to reach the user's directory. Information
about this path is cached so that the user can easily connect to ancestors of his
default directory (and to speed up future logins).

5. Concluding Remarks
This paper has described Roe, a file system designed for a heterogeneous local

network. The principal goals have been file availability (achieved through
replication), consistency, network transparency, and the ability to migrate data.

* At this time, Roe is partially implemented. One outcome so far has been to deal
with the heterogeneity of our environment. This has involved defining a common
notion of 'file copy' that can be realized from various native file servers and that is
useful for the functions being supported by Roe. As mentioned before, completion
of the Local File Servers has also provided a uniform 1FTP for access to non-Roe files
(named by location and local name in a uniform syntax). Most site-dependent issues
are taken care of within this operational part of Roe and so the remainder of the
system sees a uniform interface. Another side effect of this effort has been a number
of improvements made to the network IPC motivated by the needs of Roe.

Specification of the Global Directory Servers and the 1'ransaction Coordinator
has convinced us that it is possible to integrate migration, file replication, and
replication of directory information. This work has led to insights into the desirability
of solutions that can tolerate certain inaccuracies in the data used for management. it
has also helped develop ideas about distributed job management described in [Ellis
82]. We expect a VAX-based directory server and a prototype Trransaction

* Coordinator to be implemented by the end of summer 1983.
After completion of the first stage of the project, we plan to investigate file

migration policies, an area in which relatively little is known. Our intention is (hat
this file system implementation will serve as a vehicle for experimentation with a
number of different policies. Candidates include some approximation to Least
Recently Used for removing copies from sites of high demand to long term storage,
creating a temprr cached copy on demand, pre-fetchin& or updating a locally

-\ cached copy in antricipation of use based on the user's behavior in recent sessions or
relationships between a file already requested and other files, and upgrading a copy
to a more desirable site when recent demand for the file has increased above some
threshold. These involve monitoring file usage patterns on a. per-user basis (e.g. the
user's login profile might include a list of files used in previous sessions) and on a

per-site basis. Other measurements will be collected for the purpose of evaluating
clce.Migration may be triggered by specific events such as the creation of a new,ecusing demand for more storage, an explicit command to change the properties

Teoverhead involved in doing conversion between representations may influence

10

the decision of whether or not to move a particular copy.

Another issue we plan to consider is the distribution of directory information.
The design allows for replication within the directory structure at a relatively fine
granularity. Thus it will be possible to try out various strategies for partitioning the
structure. For example, the unit of distribution for a particular policy might be a
subtree of the hierarchy and an appropriate location for it might be at the owner's-., site. Alternatively, it may be desirable for a directory to be placed at a site that
contains a large amount of the data it refers to.

Future possibilities for research related to this project include software
development tools and various aspects of distributed job management.

Acknowledgements

The preparation of this paper was supported in part by the National Science
Foundation under Grants IST-8025761 and MCS-8104008 and by the Defense
Advanced Research Projects Agency under N00014-82-K-0193.

6. Bibliograply

[Accetta 80] M. Accetta, G. Robertson, M. Satyanarayanan and M. ''hompson
"The Design of a Network-Based Central File System,"
Technical Report CMU-CS-80-134, Carnegie-Mellon University, August 1980.

[Ball 761 J.E. Ball, J.A. Feldman, J.R. Low, R.F. Rashid, and P.D. Rovner
"RIG: Rochester's Intelligent Gateway System Overview,"
IEEE Transactions on Software Engineering, Vol. 2, No. 4, December 1976, 321-

-:'. 328.

[Bernstein 82] P. Bernstein and N. Goodman
"A Sophisticates Introduction to Distributed Database Concurrency Control,"
TR-19-82, Aiken Lab, Harvard University, 1982.

-" [Birrell 82] A. Birrell, R. Levin, R. Needham, and M. Schroeder
"Grapevine: An Exercise in Distributed Computing,"
CACM 25:4, April 1982, 260-274.

[Bukys 82] L. Bukys and R. Floyd
"Even More FTP Cogitation,"
Internal Document, Computer Science Dept., Univ. of Rochester, June 1982.

[Ellis 82] C.S. Ellis, J.A. Feldman, and J.E. Heliotis,
"Language Constructs and Support Systems for Distributed Computing."
Proceedings, ACM SIGACT-SIG OPS Symp. on Principles of Distributed
Computing, Ottawa, Canada, August 1982.

[Floyd 82a] R. Floyd
'Notes on the Roe User Interface,"Internal Document, Computer Science Dept., Univ. of Rochester, February 1982.

" . -A- . " . " " ' " "

11

[Floyd 82b] R. Floyd
"Mutual Consistency Algorithms for Roe,"
Internal Document, Computer Science Dept., Univ. of Rochester, December
1982.

[Gifford 79] D. Gifford
"Weighted Voting for Replicated Data,"
Proceedings, 7th Symposium on OS Principles, December 1979.

[Lantz 80] KA. Lantz
"Uniform Interfaces for Distributed Systems,"
TR63, Computer Science Dept. University of Rochester, May 1980.

[Lindsay 80] B. Lindsay
"Object Naming and Catalog Management for a Distributed Database Manager,"
IBM Research Report RJ 2914, San Jose, Calif., August 1980.

[Metcalfe 76] R.M. Metcalfe and D.R. Boggs
"Ethernet: Distributed Packet Switching for a Local Computer Network,"
Communications of the ACM, 1, (7), July 1976.

[Mitchell 79] J.G. Mitchell, W. Maybury and R. Sweet
"Mesa language manual (version 5),"
TR CSL-79-3, Xerox Palo Alto Research Center, 1979.

[Moore 82] L. Moore, L. Bukys, and J. Heliotis
"Design and Implementation of a Local Network Message Passing Protocol"
Presented at the 7th Conf. on Local Computer Networks, Minneapolis, October
1982.

[Oppen 81] D. Oppen and Y. Dalal
"The Clearinghouse: A Decentralized Agent for Locating Named Objects in a
Distributed Environment,"
OPD-T8103, Xerox Office Products Division, October 1981.

[Popek 81] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and
G. Thiel
"LOCUS: A Network Transparent, High Reliability Distributed System,"
Proceedings, 8th Symposium on OS Principles, December 1981.

[Rashid 80] R.F. Rashid
"An Inter-Process Communication Facility for UNIX,"
TR CMU-CS-80-124, Dept. of Computer Science, Carnegie-Mellon University,
March 1980.

[Reed 80] D. Reed and L. Svobodova
"SWALLOW: A Distributed Data Storage System for a Local Network,"
International Workshop on Local Networks, Zurich, Switzerland, August 1980.

[Stonebraker 79] M. Stonebraker
"Concurrency Control and Consistency of Multiple Copies of Data in Distributed
INGRES,"
IEEE Transactions on Software Engineering, Vol. SE-5, No. 3, May 1979.

.4,

* _- ,.-. . " d""'

12

t[St gis 80] H. Sturgis, J. Mitchell, and J. Israel
"Issues in the Design and Use of a Distributed File System,"
SIGOPS Operating Systems Review, July 1980.

[Svobodova 80] L. Svobodova
. .- "Management of Object Histories in the SWALLOW Repository,"- MIT/LCS/TR-243, Lab. for Computer Science, M.I.T., July 1980.

[Thacker 79] C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F. Sproull, and
D.R. Boggs
"Alto: A Personal Computer,"
TR CSL-79-11, Xerox Palo Alto Research Center, August 1979.

%'.5 [Thompson 80] M. Thompson, G. Robertson, M. Satyanarayanan, and M. Accetta"Spice File System,"Dept. of Computer Science, Carnegie-Mellon University, September 1980.

A!..--

, '.1

-S.",.,

! . 4

4-:::
-p."

*'°.1

*.% -. ,

J ' " ' , % " , : , , " ' , " " € ' : ' ' ' ' , ' , ' : " ¢ . r ' , " . ".q, '.. . . . ' : ' . - - . . - . . . , - .

13

Appendix

In the following description of messages, only successful outcomes are
considered. The format is OPERATION (arguments) -# data in reply.

LOGIN (username, password) -4 DirectoryPort

A user must be logged in to the Roe system in order to issue requests. A LOG N
message containing information necessary for authentication is sent to a Packport.
The server checks the validity of the user and establishes the user's working
directory. The reply contains a Directory Port to which the user sends subsequent
directory operations.

The following messages are sent to Directory Ports:

CACHE (Roefilename, site) -+ success

This message results in a current copy of the named Roefile being created at the
specified site (usually the user's local disk).

CACHEDIR (path, site) -* success

The path is a prefix of a Roefile name designating a directory node. This
operation creates a copy of the directory on the specified site.

CHDIR (path) -* success

*Jq -In response to this message, the server changes the current working directory
associated with the Directory Port to which the message was sent.

CHVOTES (Roefilename, property List Changes) -'* number of properties changed

This operation is used for modifying the voting configuration of the specified file
according to the list of changes given as an argument. Based on the changes to be/ made, an appropriate quorum must be collected.

CREATEDIR (path [, properties]) -* success

This operation creates a directory node with the specified path name. The
properties stipulate the distribution of copies of this new directory.

DELETE (Roefile name) -+ success

This operation deletes the file.

DELETEDIR (path) -+ success

This operation deletes a directory node if it is empty.
LYV ,LOGOUT () ' Success

This ends the server-client relationship and deallocates the Directory Port.

% ..

-,q

. . - -l -. - o .'" i o -

MIGRATE (Roefitename, source site, destination site) - success

This command moves the copy of the given Roefile that resides on the specified
source pack to the destination pack.

OPEN (access, Roefilename, [,recovery port name] [,properties)) -4 FilePort

This is how users acquire FilePorts. The access string describes what will be done
with the file and may be composed of the following characters:

R' indicates that the file is to be opened for reading.
A: 'W' indicates that the file is to be opened for writing.

'A' indicates that the file is to be opened with atomic access. Operations on the
file must be (two-phase) committed before the effects become permanent. The
optional argument, recovery port name, is needed for atomic access. It is used
in recovering from a crash that occurs between phases of the commit protocol.

'C' indicates that the file should be created if necessary. If the file already exists,it will be truncated to zero length when the open occurs. The optional
argument, properties, is used for creating a Roefile that does not already exist.

*- , Currently, properties consists of the desired location of each copy and the
voting configuration.

This operation is successful if an appropriate quorum of copies can be gathered to
*participate in the forthcoming transaction.

*..READDIR (destination port [, pattern]) -+r number of items read

This operation is used to obtain a list of files in the working directory, optionally
filtered through a pattern matcher first. The file names are sent to the indicated port
in a WRITE operation.

READROEPROPERTIES (Roetilename [, property name)) -+ property List

This message requests that directory-level properties associated with the named
file be returned. Optionally, only a selected properties (e.g. locations of copies) can
be requested.

REGISTER (destination port)

This operation allows the client to maintain an up-to-date idea of the contents of
a directory. Status changes for files in the directory result in file names being sent to
the specified port in the same format as the results of a READDIR.

RENAME (old Roefilename, new Roefilename) I'4 success

The file object reached by the old Roefilename is made accessible by the new
Roefilename and no longer accessible by the old name.

4.UNCACHE (Roefilename, site) -+ success

and

NN,w, _ . .. ,. .** - - -. -,- , , oq * i. " ' ... * .. *~ * % *. -. ;" -' .' - %'.% -. a

- ..- ' . "

15

UNCACHEDIR (path, site) -* success

These remove the cached copy from the given site.

The remaining messages are sent to File Ports

ABORT () -* success

This is used only if the file was opened with Atomic access. It undoes all
operations subsequent to the previous Commit point.

CLOSE () -- success

This message ends access to the resources associated with the File Port and
• - deallocates it. If the file was opened with atomic access, any uncommitted operations

are aborted.
COMMIT () -0 success

This is used only if the file was opened with Atomic access. It is the second part
of the two-phase Commit protocol.

READ (destination port, number Of Items To Read, number of items per block) "- number Of Items READ

This message requests that some number of items from the file to be written
(using the Fileort WRITE operation) to the specified destination Port. Reading
begins at the current position of the read-write pointer; when the operation is done
the read-write pointer is positioned after the last datum read.

READPROPERTIES ([propertyName]) - property Ust

This message requests that the file's property list be returned. A selected property
may be read by including the optional propertyName argument.

SEEK (position) -0 success

This message changes the value of the read-write pointer.

SYNC () -* success

This is used only if the file was opened with atomic access. It is the first part of
the two-phase commit protocol. A success reply is interpreted as willingness tocommit.
TELL () - position

This operation returns the value of the read-write pointer.

{ WRITE (data) Y WRITEACK (data) number Of Items written

... The WRITE operation is special in that the request is composed of multiple
messages. The result returned is the total number of items (from the preceding
stream of WRITE messages and the final WRITEACK message) which were
successfully written. Data sent in a WRITE operation to a File Port is propagated to
each copy participating in the transcation.

16

WRITEPROPERTIES (property List Changes) -P number of Properties Changed
Z.

This operation modifies the file's properties (other than location of copies and
voting configuration) according to the argument giyen.

*%

,1A*

1.4 '. .€..,,.;,, ,, .', :.,.',:. ., -,- ,, .'.,; :., ' -. ,;.. .-...-. .. . -.. , .,.,,

5, (250Mb)

uuseriel
(250Mb) userx

300 eclipses 200 (250Mb.

Availability. low)

M |ethernet

37 60 236 123 VAXes 321
altos I >

' " lUNIX

'S Filter-
•l s Electrolux.,.',i< / Queen
F.!tG&C I~si

(2Mb) (2Mb) (M) 4b

U of R Local Network

Figure 1
%"

5'...

5_ % .

•rser a.ernsaction ".-

?. : oordinator£" -" Global /

+f Directory

S Local c Local

File Rep.

Local c LocalFile Rep.

Server

", Ove rall Roo St ruct ure

~Figu re2

9.2

1.!
";pp.' * ' : ' - " " " " :- + =:- -,;t. . -'.:.".- ,'. V, . ', .,. o- .+

S.C*copies of "mnbox"

timestamfl: 32
votes: 2

directory
timestamnp: 47
votes: 10

file: mbox timestamp: 32

coqpy 1: [vax]filelV2 votes: 1
cony 2[uJ~serjL f ile87 _

r: 2

timestamp: 31
votes: 1

A Sample Directory

Figure 3

SECURITY CLASSIFICATION OF THIS PAGE (I"an., Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 12. SSION) .,CIPIENT'S CATALOG NUMBER

TR119 r ,

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The ROE File System Technical Report
III PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACTOR GRANT NUMBER(I)

, Carla Schlatter Ellis and Richard A. Floyd N00014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Copue Science Department"-.Computer Scec eatetAREA & WORK UNIT NUMBERS

University of Rochester
Rochester, NY 14627

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency March 1983
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, Virginia 22209
14. MONITORING AGENCY NAME & ADDRESS(I/ dill ernt from Controlling Office) IS. SECURITY CLASS. (of thl rePort)

Office of Naval Research .unclassified
Information Systems
Arlington, Virginia 22217 SC. EDUcLIEICAION/OWNGRAOING

16. DISTRIBUTION STATEMENT (of tlhi Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abactec entered In Block 20, It different from Report)

'I.

IS. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverie lde If necessary and identify by block number)

Network file system; distributed systems; consistency; reliability;
migration; transparency; replication.

^0. ABSTRACT (Continue on reverse side if neceeaefy nd identify by block number)

-ROE is a network-wide file system being developed for a heterogeneous
local network. The system has been designed for two purposes: to serve as
a testbed for experimenting with various policies for file migration and
distribution strategies and to provide users with a logically coherent file
system that takes advantage of distributed and diverse resources. The system
is a synthesis of solutions to the problems of ensuring consistency of
replicated data, allowing transparent reconfiguration, and providing adequate -(OVER)

DD F A ,, 1473 EDITION OFI NOV SS,1 OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

Unclassified
S PITY CLASSIFICATION OF THIS PAGE(Whn Data Entered)

file accessibility. This report describes what has been accomplished
so far in the ROE project. We outline the assumed environment, the
basic structure of ROE, and the functions provided. Mechanisms are
presented that allow migration, replication of file objects, and repli-
cation of access information to work together. Finally, the state of
the implementaiton to date is described.

SECURITY CLASSIFICATION OF THIS PAGt(When bata Entered)
v V ,4, t v" ,+ - ,. h . *. . . .~ . . -. -. ;... • v *., . " -+.~- *-

.4,
A-111 ,, , ,

-

1
C

-i ..;0

4'""

I: I

- VIA

-~~~ f.A r a-~
.

